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Synopsis We report the use of streaming data interfaces to process data in real time from serial 

crystallography experiments, with a latency of less than one second per frame and without requiring 

intermediate data storage on disk.

Abstract We  report  the  use  of  streaming  data  interfaces  to  perform  fully on-line  data 

processing for serial crystallography experiments, without storing intermediate data on disk.  The 

system produces Bragg reflection intensity measurements suitable for scaling and merging, with a 

latency of less than one second per frame.  Our system uses the CrystFEL software in combination 

with the ASAP::O data framework.  In a series of user experiments at PETRA III, frames from a 16 

megapixel  Dectris  EIGER2 X detector  were  searched  for  peaks,  indexed  and  integrated  at  the 

maximum  full-frame  readout  speed  of  133  frames  per  second.   The  computational  resources 

required depend on various factors, most significantly the fraction of non-blank frames (“hits”).  

The average single-thread processing time per frame was 242 ms for blank frames and 455 ms for 

hits, meaning that a single 96-core computing node was sufficient to keep up with the data with  

ample  headroom  for  unexpected  throughput  reductions.   Further  significant  improvements  are 

expected, for example by binning pixel intensities together to reduce the pixel count.  We discuss 

the implications of real-time data processing on the “data deluge” problem from recent and future 

photon science experiments, in particular on calibration requirements, computing access patterns 

and the need for preservation of raw data.
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1 Introduction

Serial crystallography experiments are well-known for generating large amounts of data (Maia & Hajdu, 2016). 

These  datasets  consist  of  many thousands  of  images,  each one being a  single  diffraction snapshot  from an 

individual crystal.  The usual processing pipeline for this type of data treats each frame on its own, and involves  

analysing the image to detect Bragg peaks followed by determining the orientation of the crystal based on the  

peak locations.  This step is known as  indexing the diffraction pattern.  If it is successful, the next step is to 

calculate the expected locations of Bragg reflections based on the crystal orientation, and finally to measure the 

intensities of the Bragg reflections at their expected locations (including reflections which were too weak to be 

detected by the initial peak search).  The intensity measurements are later combined into a single merged dataset  

from which an electron density map or other structural information can be derived.

Rapid feedback during the experiment is essential to enable optimisation of experimental parameters and make  

the best use of limited beamtime.  Online data processing has been available since the early years of serial  

crystallography  (Foucar  et  al.,  2012;  Foucar,  2016),  and  is  now  considered  indispensable  for  a  successful 

experiment.  Online feedback systems analyse a sample of the data as it passes through the computer system.  To  

date,  they  have  been  limited  to  simple  diagnostics  corresponding  to  the  first  stages  of  the  crystallographic  

processing  pipeline,  for  example  finding  Bragg  peaks  and  reporting  the  fraction  of  frames  which  contain 

plausibly useful diffraction patterns (the “hit rate”). Recently, GPU and FPGA hardware has been used to increase 

the speed of these systems, which allows a greater fraction of the data to be inspected and therefore raises the 

precision of the real-time information.  However, online monitoring systems still concentrate on the peak search 

and hit finding stages  (Leonarski  et al., 2023).  Extending the online system to cover the complete processing 

pipeline,  from detector readout images up to indexed Bragg intensity measurements,  would open many new 

possibilities.   To  do  so  requires  increasing  the  speed  of  computationally  intensive  parts  such  as  indexing, 

refinement and integration.  Previous work in this area used supercomputing resources to attack the problem 

through massive parallelism (Blaschke et al., 2021), but suitable supercomputing resources are not available close 

to all X-ray light source facilities.

Processing the data in real-time would allow electron density maps to be made available during the experiment.  

This would be particularly beneficial for sensitive time-resolved pump-probe experiments, where the signal being 

studied is often a very small difference electron density.  For a successful experiment, more feedback is needed  

than just hit rates: the clarity of the electron density map needs to be inspected, and corrections possibly made to 

parameters such as the pump laser alignment (spatial and temporal) or power.  Without this feedback, problems 

which destroy the pump-probe signal altogether may not be detected until after the experiment.  Worse still, the  

only avenues for “improvement” of the signal will be changing the data processing parameters, regardless of  

which aspects of the experiment truly needed improvement.  Repeated re-processing of data in search of a weak  

signal, when combined with publication bias, may raise questions about the reliability of the final results.  For 

example, if a particular dataset is repeatedly processed with different parameters, the electron density map from 



each new processing run may contain different features at low significance, due simply to random noise.  It could 

be very misleading to select (by stopping the re-processing at that point) the result where the artifacts most  

resemble some expected pattern.

The next generation of free-electron laser sources are based on superconducting linear accelerators, which can 

produce  more  than  a  million  pulses  per  second.   Faster  detector  systems  are  also  becoming  available  at  

synchrotron facilities, in particular at fourth generation synchrotrons, such as the Jungfrau system which can  

sustain a rate of 1000 frames per second including all the required calibration steps (Leonarski et al., 2023).  The 

data rate is also increasing due to improvements in the efficient use of measurement time, for instance more  

reliable sample delivery methods which allow data acquisition to continue without breaks  (Oberthuer  et al., 

2017), or  crystal  targeting systems which avoid acquiring blank frames  (Oghbaey  et  al.,  2016).   While  the 

number of diffraction patterns for one structure may not increase, these improvements increase the total amount 

of data acquired — and almost invariably stored — by the facility as a whole.  X-ray facililties are already 

beginning to impose severe restrictions on the amount of data allowed per experiment.  In the context of these 

struggles, an even more dramatic and ambitious possibility enabled by full real-time data processing is that the 

intermediate data storage could be dispensed with altogether.  This suggestion raises many questions about the  

underlying motivation for storing data, which will need to be addressed.

In this paper, we report a highly automated system for real-time data processing at the P11 beamline of the 

PETRA III synchrotron at DESY in Hamburg, Germany.  The serial crystallography data processing pipeline was 

made sufficiently fast to keep up with the data rate of a Dectris EIGER2 X 16 megapixel detector in real-time, 

even  with  only  a  single  computing  node.   Our  data  processing  system is  based  on  the  ASAP::O platform, 

described in section 2, combined with the CrystFEL software for serial crystallography (White et al., 2012).  The 

key developments to improve the speed of CrystFEL are described in sections 3 and 4.  In section 5, we describe 

the experiences from running this system over a series of user beamtimes between 2021 and 2023, including 

performance measurements which show that the system is likely to be scalable up to thousands of frames per  

second.  Finally, we consider the possibilities, risks and implications of real-time data reduction, with a view to  

starting discussion within the wider community.

2 The ASAP::O data system

ASAP::O1 is  a  cutting-edge,  high-performance  distributed  data  streaming  platform,  developed  to  meet  the 

demands of both online and offline analysis for photon science experiments at DESY.  The ideas behind ASAP::O 

are quite similar to those of Apache Kafka2 and similar streaming solutions, but ASAP::O is developed and tuned 

for  scientific  use  cases  with  their  specific  workflows  and  where  the  size  of  the  messages  is  much  larger: 

megabytes or gigabytes, compared to kilobytes in a traditional system.

The key capabilities of ASAP::O are:

1 https://asapo.pages.desy.de/asapo

2https://kafka.apache.org/



1. High-performance and fault-tolerant delivery of data from an experimental data source (e.g. an X-ray 

detector) into a data storage system.

2. Enabling different  modes of  data consumption,  including random access,  low-latency streaming and 

parallel access by multiple consumers.

3. Creation of computational pipelines by applying transformations to existing data streams.

To provide these capabilities, ASAP::O has three main components: a Producer API to send data into the system, 

a Consumer API to retrieve data from the system, and a set of ASAP::O core services that run in the background 

on a single node or a cluster, depending on performance requirements.  User programs does not need to be aware  

of the details of the core services, but rather use Consumer/Producer APIs in Python, C or C++.

Data within ASAP::O follows a structured hierarchy:

 Beamtime: The highest level, encompassing all data from a particular synchrotron experiment.  Each 

beamtime is  identified by a unique name which is  ultimately generated by the proposal  submission 

system.

 Data Source: Within each beamtime, various sources produce data, such as detectors or user applications. 

Each data source also has a name, unique within the beamtime, for identification.

 Data Stream: Each data source can generate multiple data streams, each with a unique name within that 

specific data source, which can be used to represent a “run” of data acquisition.

 Message: Data streams consist of flexible entities called messages, which contain metadata and binary 

data such as a detector image in a suitable data format such as HDF5.  ASAP::O treats data as an opaque 

binary “blob”, and is not concerned with the format of the contents.

This scheme is quite flexible and allows for adaptations to the specific needs of experiments.   In the work  

described in this article, we have only one data source – the area detector for X-ray diffraction – however other  

data sources could exist in parallel.  We use ASAP::O streams to represent user-initiated data acquisition runs,  

each around 20 minutes, forming convenient units for record-taking.  Each ASAP::O message within a stream 

contains the data for one image frame.

After defining a data scheme, a set of user programs has to be created to process data.  Producer clients are 

responsible for creating data streams (i.e. for ingesting data in the system). Consumer clients are responsible for 

processing streams of data that were created by producers.  A program that implements one step of a processing 

pipeline will  read a data stream, process the data and send the results into another data stream, and so will  

simultaneously be both a consumer and a producer.

To apply CrystFEL to the data handled by ASAP::O, we implemented an ASAP::O consumer interface within 

CrystFEL’s indexamajig tool (White et al., 2012).  Instead of providing a list of files to be processed, we provide 

the ASAP::O endpoint address, data source name, stream name and security token as command line arguments.  

Indexamajig performs a peak search, indexes and integrates the frames, writing its output to disk as usual.



Our real-time data processing system does not rely on storing data files, but we considered it important to enable  

a gradual migration from the current disk-based way of working.  We therefore created a tool which stores the 

data in NeXus format (Könnecke et al., 2015).  This tool is written in Python, and creates a separate set of files 

for each ASAP::O stream.  The frames are grouped together in batches of 1,000, to produce a manageable number 

of  reasonably-sized  files.   A top-level  “master”  file  is  also  created,  which  uses  HDF5’s  virtual  data  set  

functionality to link the batch data files together and add metadata such as the X-ray wavelength.  This allows the  

entire data for one run to be accessed as if it were contained in one single file.  Division into files also allows  

multiple slices of data to be written simultaneously,  without an extra level of synchronisation, which is not  

normally possible with HDF54,  although parallelisation was not found to be necessary in our case.  Our chosen 

message format (see section  5) meant that the ASAP::O data can be directly written to the HDF5 file without 

decompression and re-compression, further increasing performance.

ASAP::O offers a level of fault tolerance.  Data passing through the system is stored in a volatile memory cache,  

limited only by the available RAM of the ASAP::O servers.  In the current deployment, in use as described later 

in this article, about 20 minutes of data could be stored.  If, for example, the NeXus writer task were to crash, we 

would have 20 minutes to notice the problem and restart the writer, and perhaps pause data acquisition to allow it  

to catch up.  A catch-up period might not be necessary in practice, since the file writing usually runs at a higher  

rate than the data acquisition.  ASAP::O can additionally be configured to store the messages internally in a  

filesystem (which  could  consist  of  fast  solid-state  flash  drives),  which  would  give  an  even  higher  level  of  

reliability, but the RAM cache combined with the NeXus writer program was found to be sufficiently reliable for  

this work.

Comparable systems for real-time data handling at other X-ray light source facilities are often based on the  

message queue system ZeroMQ.  This is simple to get started with, but quickly becomes difficult as the pipeline 

grows more complex and important features are missed and need to be reimplemented.  One such feature is that 

ASAP::O can automatically divide data between multiple consumers within a so-called “consumer group” while  

allowing consumers to join and leave without losing data. This means that no extra code is needed in the analysis 

program to spread the computation between threads, processes or even separate computers. It is sufficient for  

them to simply request data from the same stream while declaring themselves all to be members of the same 

ASAP::O consumer group.  This feature allows the computing resources to be dynamically scaled: if a program 

falls behind with its processing, additional instances of the program can be started on the fly.  If too many  

instances are running, wasting computing resources, instances can easily be stopped and the work will be shared 

between the remaining instances.  This setup can also be created using ZeroMQ, however ASAP::O also allows  

multiple separate consumer groups to operate in parallel, with different access patterns, and without the groups 

and their access patterns being known in advance. For example, one consumer group could consist of multiple 

instances  of  an analysis  process,  while  another  consists  of  a  single  data  archiving process,  and yet  another 

consists  of  a  live viewer which accesses only the most  recent  data.   This type of pipeline structure closely  

matches our requirements, but is not directly supported by ZeroMQ.

4 The necessary synchronisation can be implemented using MPI (Message Passing Interface), but this would require 
a very different design for the program.



The overall flow of data through our system is shown in figure 1.  To illustrate the possibilities, the diagram also 

includes two foreseen improvements: a binning tool,  and the  option for CrystFEL to create a new ASAP::O 

stream containing only the “hit” frames.  These components are still under development, and their potential future 

importance is discussed in sections 6 and  7.

3 Performance improvements within CrystFEL

Processing serial  crystallography datasets  has  so  far  been thought  of  as  a  computationally  demanding task.  

However, many speed improvements have been made in CrystFEL since version 0.10.0, which have combined to 

make real-time processing practical.   Some of  these improvements  are  changes to  the code,  and others  are  

changes in the way CrystFEL is used.  We performed rounds of profiling (see section  5) to find performance 

problems and fix or work around them.  The most significant speed improvements are described in this section.

First, the processing parameters for CrystFEL were selected to avoid excessive work per frame.  CrystFEL was 

configured to use only one indexing algorithm, rather than a succession of alternative methods, and not to re-try 

indexing if the initial attempt failed.  The usual behaviour is to re-try up to 5 times, each time deleting the  

weakest few peaks from the peak search results.  This improves the success rate, but obviously takes much more  

time.   Many  indexing  algorithms  are  available  within  CrystFEL,  and  we  performed  an  brief  preliminary 

experiment to compare indexing success rates and average processing times, based on processing a sample of 

data from previously deposited dataset CXIDB-21 (Liu et al., 2013; White, Barty et al., 2016).  We found that the 

asdf indexing algorithm gave the best overall trade-off between speed and success rate.  Despite having been 

available for many years, the asdf algorithm has not been described previously in the literature, and therefore is  

described here in section 4.

In addition to the run-time parameters for CrystFEL, it was important to ensure that the correct compile-time  

parameters had been chosen.  For example, we realised that compiler optimizations had not been enabled for  

some  data  compression  components  (the  HDF5  “External  filter  plugins”  package),  and  enabling  them 

approximately halved the time taken to read and decompress the image data from 122 ms to 59 ms for a 16 

megapixel frame read from an HDF5 file on disk5.

We noticed a speed problem due to the method used for masking regions of the detector, such as the region  

shadowed by the beam stop.  In CrystFEL, it is possible to define masked regions in several ways.  In one of  

these ways, a rectangular region of pixels is defined with reference to the data axes of the image arrays, which 

would be appropriate for masking an area of noisy or otherwise defective pixels.  Another option in CrystFEL is  

to define the region using coordinates in the laboratory frame, which would be appropriate for masking the pixels 

shadowed by a beam stop.  However, this means that the range of pixels masked will change if the detector is 

moved.  When masking pixels in this way, CrystFEL checks the laboratory frame coordinates of all pixels on the 

detector to see if they fall within the masked area.  For a 16 megapixel detector, this was found to take about a 

third of the total  processing time, and the speed was improved by converting the expression of the masked  

regions to use pixel ranges instead of laboratory coordinates.  A more efficient algorithm for selecting the masked  

5 This speed measurement was performed in a single thread on a desktop computer equipped with an 8-core Intel 
Xeon W-2225 processor at 4.1 GHz clock frequency, and 16 Gb of memory.



pixels  from laboratory  coordinate  ranges  is  possible,  using  geometrical  intersections,  but  has  not  yet  been 

implemented.

We next turned our attention to the peak search and indexing algorithms.  The peakfinder8 algorithm (Barty et al., 

2014) works by calculating the statistics of pixel intensities in thin annular regions, to account for the much larger  

variation  of  background  intensities  in  the  radial  direction  compared  to  the  circumferential  direction.   The 

assignment  of  pixels  to  annular  regions  usually  does  not  vary  between frames,  so  we modified  CrystFEL’s 

implementation of the peakfinder8 algorithm to pre-calculate the assignments, once for all frames.  We measured 

the average time saved by this as 376 ms per frame, under the conditions described above.  This is only possible  

if the detector geometry is completely known in advance: the alternative, which is possible with CrystFEL, is to 

use per-frame metadata for values such as the beam center or camera length.  This grants additional flexibility,  

but means that the true detector geometry cannot be assumed constant between frames and is not completely  

known until each image has been loaded.  We were therefore careful to ensure that the CrystFEL geometry file  

did not contain any such references.

To further increase the speed of the peak search, we reduced the number of pixels considered when calculating 

the mean and variance of the pixels within each annular region.  The previous behaviour was to calculate the  

mean and variance of the pixel intensities from all pixels in the region.  For a 16 megapixel detector, this is an  

excessively large number of pixels, and we found that adequately precise values could be obtained from only 100 

randomly-chosen pixels in each region.  Measured again as described above, this reduced the total peak search  

time from 178 ms to 75 ms per frame.  We compared the results for a selection of images using the CrystFEL 

graphical user interface, and did not find any significant differences in the ability of the algorithm to find real  

peaks.   However,  since  this  change  may slightly  change  the  results  of  the  peak  search,  we made  the  new 

behaviour optional and added a new command-line option (--peakfinder8-fast) enable it.

Another inefficiency was found in CrystFEL’s  routine for calculating scattering vectors for reflections.  In the old 

version, the matrix of unit cell basis vectors was inverted every time, and the scattering vector calculated using  

trigonometric functions.  In the new version, the result of the inversion is stored, and the vector is calculated by a 

matrix multiplication using the reciprocal Cartesian representation of the unit cell.  This avoids both the repeated  

inversion  and  the  computationally  expensive  use  of  trigonometric  functions,  however  it  required  some 

modification in the code because the program’s representation of a unit cell could no longer be considered as an  

immutable data structure (which is otherwise preferable for clean and memory-safe software design).

Finally, we discovered that the time taken per frame often increased by approximately 50% after processing a few 

tens  of  thousands  of  frames,  under  the  conditions  described in  section  5.   We do not  yet  have a  complete 

explanation for this, and have already checked carefully to exclude a simple memory leak.  We suspect that the 

slowdown is due to the behaviour of the operating system kernel when allocating fresh memory many times 

across multiple processes.  CrystFEL’s previous behaviour was to free all the memory it needed to process one 

frame, immediately before starting work on the next frame and re-allocating approximately the same amount of  

memory. We modified CrystFEL such that each worker process used the same memory arrays for the image data 

and bad pixel masks for all the frames it processed, which appeared to resolve this problem.



None of the improvements described in this section are specific to online data systems, because the adaptations 

made to allow CrystFEL to receive data via ASAP::O affected only the parts of the program which ingest data.  

Therefore, all the efficiency gains will also increase the speed of traditional file-based processing.

4 The ASDF indexing algorithm

Many indexing algorithms have been devised for the specific attributes of serial crystallography data (Ginn et al., 

2016; Gevorkov et al., 2019, 2020; Beyerlein et al., 2017; Brewster et al., 2015; Li et al., 2019).  Up to now, the 

primary aim of these developments has been to get the highest success rate, and the time taken by the indexing 

algorithm has  been a  secondary concern.   The applicable  trade-offs  are  different  for  a  real-time processing  

system: speed is  of  the highest  importance,  and a  slightly lower success  rate  is  acceptable  if  the  algorithm 

completes several times faster.  Many indexing algorithms are implemented within CrystFEL, and the current 

state-of-the-art algorithm, at least according to success rate, is Xgandalf (Gevorkov et al., 2019).  This algorithm 

typically completes in under 3 seconds, but this is too slow for real-time processing.  The success rate of indexing 

depends on many factors, such as the unit cell axis lengths: various cutoff values inside an algorithm might be 

tuned for larger unit cells, and not be optimal for smaller unit cells.  The speed of indexing can also depend on  

these factors, for similar reasons: one algorithm may “give up” on a certain pattern earlier than another, based on 

a cutoff value.

For  this  work,  we  found  that  the  best  compromise  between  indexing  success  rate  and  speed  was  the  asdf 

algorithm, which completes in under half a second but still with a high success rate.  The asdf algorithm was  

added to CrystFEL many years ago in version 0.6.1 (released in August 2015), but has not yet been described in  

scholarly literature.  It is essentially a re-implementation of the DirAx algorithm (Duisenberg, 1992), but using a 

Fast Fourier Transform for the one-dimensional periodicity search at the core of the algorithm.  It additionally  

includes a unit cell volume constraint, which filters out bad indexing solutions early, based on the known unit cell  

parameters.  Since asdf is implemented directly within CrystFEL, there is no need to create temporary files, run a 

separate program or parse output, as is the case when using external programs such as Mosflm (Powell, 1999), 

DirAx (Duisenberg, 1992) or XDS (Kabsch, 1988) as the indexing engine.

Briefly, the asdf algorithm operates as follows:

1) Calculate the three-dimensional reciprocal space coordinates corresponding to all spots found by the 

peak  search,  based  on  the  Ewald  sphere  construction  using  the  nominal  radiation  wavelength  and 

ignoring any wavelength spread.

2) Assemble the reciprocal space points into groups of three (triplets).  If the number of triplets is very  

large,  randomly  select  20,000  triplets  based  on  the  first  2000  reciprocal  space  points.   Otherwise,  

generate all the possible triplets.

3) For each triplet, perform the following steps:

a) Calculate the normal to the plane containing the three points.  Project all reflection positions onto a 

line through the origin in this direction, to produce a set of distances from the origin.



b) Create a one-dimensional array of 1024 real-valued elements, containing zeroes.  The first element 

of the array will correspond to the most negative distance determined in the previous step, whereas 

the  last  element  will  correspond  to  the  most  positive  distance.   The  elements  in  between  will 

correspond linearly to the distances in between the two.  For each of the distances, add 1 to the  

corresponding element of the array.

c) Perform a Fourier transform of the array.  This produces a new one-dimensional array with complex-

valued elements, each of which corresponds to a separation length between the reflection positions.

d) Find the element of the transformed array with the largest magnitude.  Calculate the length that the 

index of this element corresponds to.  Note that the reciprocal of this length, in the direction of the  

normal vector for this triplet, is a candidate for one of the direct-space lattice vectors.

e) Determine which of the distances from step 3a are close to integer multiples of this length.  Using 

these distances, perform a least-squares fit to estimate the repeat length more accurately.

f) After  the least-squares fit,  if  more than 6 points  are close to integer multiples of  the estimated 

distance, accept the candidate lattice vector.  Otherwise, disregard it from further processing.

4) Determine the three shortest linearly independent vectors with sufficient fits, and construct a unit cell  

from them.  If prior information is available about the lattice parameters, require that the volume of the  

cell produced here matches the volume of the reference unit cell.

5) Return the unit cell for the prediction, integration and output stages of the pipeline (White, Mariani et al., 

2016).

During the course of this work, further speed improvements have been made to asdf.  We added the limit on the  

number of triplets in step 2 after noticing the excessive amount of calculation from our profiling data described in  

section  5.   We later reduced the limit  on the number of triplets from 20,000 to 10,000, and the number of  

reflections considered from 2000 to 120.  We tested this change on a sample of 1000 Eiger 16M frames in a 

NeXus file on disk, using an 8-core Intel Xeon W-2225 processor at 4.1 GHz clock frequency and 16 Gb of 

memory, with indexamajig running as a single thread.  The data files came from one of the experimental runs  

described in section 5.  Restricting the triplet search parameters increased the average speed of the asdf algorithm 

from 318±219 ms to 106±49 ms.  In this test, there was no decrease in the indexing success rate (144 indexed 

frames out of 576 “hits” within the 1000 test frames), but since the reduction may theoretically change the results, 

we made this change optional by adding a new option to indexamajig (--asdf-fast) to preserve compatibility with  

previous results.

5 Beamtime experiences and performance evaluation

We have extensively tested the real-time data processing system at the macromolecular crystallography beamline  

P11 at PETRA III, DESY, Hamburg, in multiple experiments since September 2021.  For these tests, we used the 

standard detector at the beamline, which is a Dectris Eiger 2X detector with 16 megapixels.   The experiments  

were carried out using the CFEL tape drive system for crystal delivery (Zielinski et al., 2022).



To connect the Eiger detector at P11 with ASAP::O, we wrote a Python program which connects to the Eiger  

detector’s ZeroMQ streaming interface and passes the data into ASAP::O.  We initially used HDF5 for the data  

format6.  However, the flexible data model of HDF5 is superfluous for our purposes, and it is sufficient to transfer 

a single data array, provided that some basic information is included about the array dimensions and data type. 

The Eiger streaming interface already provides data compressed with LZ4+Bitshuffle, which we used directly as  

the payload of the ASAP::O messages.  We wrote a new serialization library, called Seedee, to abstract the data  

format and compression algorithm details within CrystFEL and other tools using the system.  The Eiger-ASAP::O 

connector program runs continuously, starting a new ASAP::O stream whenever the detector reports a new run 

number.  The run number itself is generated by the beamline control software, and sent to the Eiger detector  

control unit using its HTTP “Simplon” interface for inclusion in the message headers.

To  evaluate  the  performance  of  the  system,  we  acquired  data  from  lysozyme  crystals  using  the  JINXED 

crystallisation method (Henkel et al., 2023).  Since these crystals are a well-known standard, they allowed us to 

control the hit rate.  We processed the unbinned full-frame readout from the detector, running at its maximum 

possible speed of 133 frames per second.  The experimental conditions were monitored using OnDA Monitor 

(Mariani et al., 2016) connected to the HTTP monitoring interface of the Eiger detector, completely separate to  

the ZeroMQ interface used for the real-time processing.  We held the hit rate close to 100%, meaning that the  

number of blank frames was low compared to a “real” sample.  Since blank frames can be skipped over soon after 

the peak search, this provided a more severe test of the performance of the indexing and integration.

As usual for serial crystallography experiments, measurements were made in “runs” containing between 10,000 

and 400,000 frames, or between 1.25 and 50 minutes at 133 frames per second. For the first experiments, we 

configured CrystFEL to automatically move between acquisition runs, producing one large output file.  However, 

we quickly found it better to preserve the separation into runs for the online system, which makes it easier to spot 

differences in behaviour of the sample or the processing system.  To this end, a new CrystFEL process was started 

for each run, writing to a new output file and producing separate log files.  A web-based database system stored  

the processing parameters, monitored the output and presented the results, as well as providing an interface for 

merging the data and calculating electron density maps7.

We modified CrystFEL’s indexamajig tool to measure the time taken by various steps of processing.  This was 

done by adding instrumentation code which measured the time elapsed between the start and end of various 

segments of code.  The “wall clock” time was used, rather than the cumulative amount of run-time allocated to 

the program by the operating system, in order to explicitly include periods such as when the operating system 

suspended execution of the program while waiting for network data.  One record was written for each iteration of 

the main processing loop inside indexamajig — requesting an image frame, processing it and writing the results  

— regardless of whether the full processing arc was completed or broken off early.  Each record consisted of a 

hierarchical tree structure, where each node was linked to lower-level nodes which account for the time taken by 

instrumented code segments encountered while the “parent” segment was still active.  For example, sub-tasks for  

6 The HDF5 format can be used with data in memory, without creating files on disk.
7 The web-based database system, called “Amarcord”, has much larger scope and will be described in detail in a 

future publication.



loading  the  image  data  include  allocating  memory,  decompressing  the  data  and  setting  up  certain  metadata 

structures.   The total time taken to process the image (which was labelled as “root”), always forms the “trunk” of  

the tree.  Initially, the instrumentation was added at the level of the main processing tasks, such as loading data,  

peak search or indexing.  Lower-level segments were instrumented once we ascertained which parts consumed 

the most time.  This performance profiling system has already been used independently by another group and is 

described by them (Gasparotto et al., 2023).

To plot the profiling results, we created a visualisation package in the Julia programming language.  We first 

averaged the times in groups (of  50 or 133 records,  as noted in the figure captions),  taken in order of  the  

completion time for each iteration of the processing loop.  For each batch of records, we took the ten largest 

times, and grouped the remaining times into a single “other” group.  The groupings were then plotted as a stacked 

area plot (figures 2a and 2b).  The colour key is shown in figure 2c, which includes all timing records not grouped 

into the “other” category in either graph.  To fully understand the meanings of the timing definitions requires 

inspection of the CrystFEL code, because they depend on the implementation details of the algorithms.  However, 

they can be briefly explained as follows:

asapo-get-next: Requesting the next frame from the ASAP::O system.

malloc-copy: Allocating a memory block for intermediate storage of the ASAP::O data.

asapo-fetch: Catch-all group for any remaining time taken during retrieval of the data from ASAP::O.

seedee-deserialize: Decompressing the image data.

seedee-panel: Converting the image data to a standard format (IEEE 754 single-precision floating point) while  

copying the data into image panel data locations.

load-image-data: Catch-all group for any remaining time taken during loading of image data into CrystFEL data 

structures.

flag-values: Marking bad pixels according to their values in the image data.  In this case, any pixel with a value  

of 65535 is considered masked.

pf8-mask: Preparing internal data structures for the peakfinder8 algorithm.

pf8-rstats: Calculating the mean and variance of the pixel values in annular regions, part of the peakfinder8 

algorithm.

pf8-search: Comparing the pixel values to the mean and variance, and calculating the peak locations, within the 

peakfinder8 algorithm.

peak-search: Catch-all group for any remaining time spent in the peak search algorithm.

asdf-triplets: Generating the reciprocal space triplets, part of the asdf indexing algorithm.

asdf-findcell: Attempting to assemble a unit cell out of combinations of the potential basis vectors within the asdf 

algorithm.



asdf-search:  Catch-all  group for any remaining time spent in the search phase of the asdf algorithm.  This  

includes the time taken for the 1D Fourier transforms of the projected spot positions.

prerefine-cell-check:  Comparing the unit  cell  produced by the indexing algorithm against  the reference cell 

parameters.

integration: Calculating (“predicting”) the reflection positions based on the indexing solution, and measurement  

of the intensities from the image.

zero-mask: Initialising the bad pixel mask to zero (see the note at the end of section 3).

process-image: Catch-all group for any remaining time spent working on an image (not the time spent between 

processing images).

root: Catch-all group for any remaining time not covered by the groups above (and also not falling into the 

“other” category – see above).

Figure 2a shows timing data from a run with an overall average hit rate of 54 %.  The processing was run with 96  

worker processes on a single 96-core compute node (192 virtual processors when including simultaneous multi-

threading).  Note that not all categories are clearly visible in the plots: malloc-copy is visible as a very thin strip 

at the bottom of figure 2b, whereas asapo-fetch, process-image and root are not visible at all.  Their descriptions 

are nevertheless given for completeness, and the near-invisibility of the smallest times gives confidence that all  

relevant time has been visualised.  The near-invisibility of the “root” category also supports this confidence.

The most time-consuming step is apparently “asapo-get-next”, in which CrystFEL requests the ASAP::O system 

to provide the next frame.  However, this actually indicates that too many indexing workers were running for the  

situation, therefore the workers spent most of their time waiting for data.  With 96 worker processes, on average  

722 ms are available for processing each image (96 × 1/133).  If the processing time for one frame is less than 

this, the program will have to wait for the next frame to become available.  The average processing time across  

the whole run, including this waiting time, was 731 ms, in agreement with the expected value.

At the very start of the run, much longer waiting times are seen.  These reflect the timeout-based behaviour of  

ASAP::O: if no data is available, the API call to get the next frame will return after a user-definable timeout,  

which was set to 3 seconds in this work.  After the initial period, the next frames are processed with very little  

waiting time, while the system catches up with the cached data before the steady state establishes itself.  The  

behaviour shown in the graph persisted for the entire duration of even the longest runs (400,000 frames, lasting 

50 minutes), which corresponds to more data than can fit in the ASAP::O memory cache.  This demonstrates that 

the processing system is stable under steady-state situations, not just under “burst” conditions.

Excluding the “asapo-get-next” time from the graph reveals the true time taken by the processing, and how it 

strongly depends on the hit rate (figure 2b).  The average processing times for hits and non-hits in the entire run 

were 455 ms and 242 ms respectively, and the overall average processing time was 378 ms.  The most time-

consuming step overall is seen to be the peak search, which is expected because of the large number of pixels and 



because  the  peak  search  must  look  at  every  pixel  of  every  frame.   For  hit  frames,  the  processing  time  is  

approximately doubled because of the long search for lattice vectors.

It  is  somewhat  remarkable  that  the  time  for  comparing  unit  cell  parameters  (prerefine-cell-check)  appears  

prominently enough to be seen on the graphs.  This task appears trivial, but is complicated by the fact that the unit 

cell produced by the indexing algorithm can be an alternative representation of the correct unit cell.  For example, 

a primitive representation might be produced for a centered unit cell.  In general, there are an infinite number of  

possible representations for any lattice.  Lattice representation and comparison is, even today, an active area of  

research (Andrews & Bernstein, 2023).  CrystFEL is currently using an algorithm based on comparison of Niggli-

reduced  cells  in  the  G6 space  (Andrews  &  Bernstein,  1988),  but  recently-described  alternative  algorithms, 

specific to the requirements of serial crystallography,  may be faster (Andrews et al., 2023).

Our experiments with the real-time system revealed the importance of understanding the interaction between 

elements of the high-performance computing environment in which it runs.  In our first experiments, before  

implementing many of the optimisations described in section 3, we had to split the CrystFEL processing across 

multiple compute nodes.  After the speed improvements, a single node was found to be sufficient, even when 

sharing the computer with other tasks such as the OnDA Monitor.  However, this meant that all the data needed to 

flow over one network link, to one computer, and the bandwidth of the link was not sufficient.  It can, therefore,  

be better to spread the computing over multiple smaller computers, rather than to use a single very powerful one.  

This bottleneck led us in turn to detect a software library misconfiguration which meant that data was flowing 

over 10 gigabit per second Ethernet links within the data centre, instead of 100 gigabit per second Infiniband 

links as intended.  With the compressed size of each frame from the Eiger detector being about 7 megabytes, the 

total data rate is approximately 8.5 gigabits per second, and the 10 gigabit connection is not quite sufficient when  

including the co-existing OnDA monitor as well as network overheads.  This misconfiguration was fixed for later  

experiments.

To complete the validation of the pipeline, we report a protein structure solved using data from the real-time 

pipeline.  We took a single run of 200,000 diffraction patterns from JINXED lysozyme crystals as described 

above, from which 14,322 lattices could be indexed and integrated by the pipeline.  The indexamajig output from 

this run was merged using “partialator”.  Partiality modelling was not used (the “unity” model was selected in 

partialator).  This resulted in a dataset with useful resolution out to 1.8 Å, judged by the point where CC * fell 

below 0.5, with the entire resolution range to the corner of the detector divided into 20 shells.  The correct space  

group  was  assigned  and  Rfree  flags  generated  using  the  program phenix.reflection_file_editor.   A previously 

deposited JINXED lysozyme model processed using the traditional offline analysis pipeline (PDB accession code 

8B3L) was used as a starting model for refinement after removal of alternate conformers, waters and all non-

protein residues apart from one Na+ and two Cl- ions.  The unit cell parameters from this structure. which were 

used as reference parameters for the indexing pipeline, were also used for refinement. Refinement was carried out 

using phenix.refine  (Afonine  et al.,  2012) and the results of each round of refinement inspected using Coot 

(Emsley & Cowtan, 2004), but we omitted all manual re-building steps.  This was followed by a final automated 

refinement and re-building step using PDB-Redo (Joosten et al., 2014), resulting in a model refined against data 

out to 1.8 Å (R/Rfree: 0.19/0.22).  The isotropic B-factors are slightly higher than would usually be expected 



(34.62 Å2 compared to 25.04 Å2 for the previous JINXED model), which could be attributed to shortcomings in 

geometry optimization of the real time pipeline and needs to be investigated further.  Otherwise, no pathologies 

could be detected in the model.  Data processing and model statistics are shown in Table 1, and the resulting 

model was deposited in the PDB with accession code 8RPM.

6 Discussion

We begin this section by acknowledging the importance of preserving raw data.  Important reasons for data 

preservation include the principles of basic scientific integrity and reproducibility, as well as the hope for future  

improved data processing methods.  In the past, the cost of data archiving has been negligible compared to the  

cost  of  repeating  the  experiment,  taking  into  account  the  cost  of  protein  expression,  purification  and 

crystallisation, the costs of researcher travel to the X-ray facility, and the cost of operating the facility itself.  

However, the costs of large-scale data storage are huge, and now can be much greater than the other cost of the 

experiment.  At current prices, the marginal cost of storing 4 petabytes of data for 5 years, on reliable enterprise-

grade  storage  systems,  is  around 200,000 Euros.   The  European  XFEL beamlines  easily  produce  around a  

petabyte of data per day during operation.  Some of the other experimental costs are also decreasing: for example, 

travel is less necessary in view of improved systems for remote facility access and “mail-in” samples.  The data 

storage costs are increasing, in contrast, and will make up a larger fraction of the overall costs.

Previously, storage of data on disk was an integral part of the processing pipeline: data files on disk formed the 

“connection” between the data acquisition and data processing stages of an experiment.  Our real-time system  

instead makes this connection using network links and in-memory systems.  Data can be persisted on disk, but  

this function is optional and occurs at the end of the pipeline, not in the middle (see figure 1).  We are therefore 

free to choose the manner of data storage appropriate to the scientific goals.  Several scenarios can be envisaged, 

depending on the requirements of the experiment and the need for consideration for future improvements to the 

data processing.  Possible considerations include reproducibility, requiring us to store only the frames which were 

successfully indexed and integrated (i.e. which contributed directly to the final merged data), but in raw format 

with no lossy compression or binning.  Another consideration is  “improvability”, which would require us to 

additionally store frames that could not be successfully processed, in the hope that they might become usable 

with future developments in analysis methods.  Yet another consideration is integrity, for which we could store a  

much smaller sample of frames as proof that the results were not fabricated.  In the event that a bug was found in 

the analysis software at a later date, a small data sample could allow us to check whether the experiment was 

affected and validate the conclusions.

Abandoning storage of all raw data will reduce the costs, but has obvious risks.  Accurate calibration data is 

required  for  the  detector  geometry  and  its  intensity  response,  and  many data  processing  problems in  serial 

crystallography are attributable to inaccurate calibration.  In this work, we used an Eiger detector, which has  

excellent properties in this regard: it requires no regular re-calibration of gains, has a stable set of bad pixels, and 

consists (from the software point of view) of a single large panel.   Segmented detectors with adaptive gain 

switching, such as the AGIPD (Allahgoli et al., 2015), ePix (van Driel et al., 2020), CSPAD (Carini et al., 2013) 

or  LPD  (Veale  et  al.,  2017) present  much larger  calibration challenges,  which will  need to  be reliably and 



preferably automatically solved.  Other possible risks are that the crystal lattice parameters do not match the  

reference parameters (which would prevent any diffraction patterns from being indexed), or that the peak search  

parameters  were  set  too  conservatively  (which,  in  an  extreme  case,  could  make  hit  frames  being  wrongly 

classified as blanks).  Real-time feedback tools, using data from the real-time processing results, could be added 

in the future to mitigate these risks.  Changes might be needed to the workflow of an experiment, such as taking 

time to carry out a short preliminary experiment to determine the lattice parameters if they are initially unknown.

At one extreme, a problem with the data processing could mean that the entire experiment would need to be 

repeated, including purifying and crystallising the protein sample.  The core question is whether the risk of this 

situation is acceptable, balanced against the cost of storing large amounts of data as a type of “insurance”.  The 

acceptable  level  of  risk  will  depend on the  type of  experiment.   For  example,  an  experiment  probing very 

valuable crystals of a large unit-cell membrane protein complex will value the raw data much more highly than a  

pharmaceutical ligand screening experiment probing thousands of very similar samples.

We would like to draw attention to the distinction between real-time processing, the main focus of this paper, and 

real-time  monitoring.   For  the  best  user  experience,  the  real-time processing  system described  here  can  be 

complemented by a monitoring system based on OnDA Monitor (Mariani et al., 2016) in which the instantaneous 

hit rates and indexing rates are graphed continuously, independent of any partitions into runs.  The monitoring 

system indexes patterns with no prior information and reports the observed lattice parameters, which allows any 

contaminants or alternative crystal forms to be quickly spotted.  The real-time  processing system, in contrast, 

indexes the patterns using prior  information about  the crystal  lattice parameters,  in order to ensure that  the  

patterns  are  all  indexed  consistently  and  can  be  merged.   Our  real-time  monitoring  system  can  operate  

independently, taking data from the Eiger detector’s monitoring interface (which provides a low-speed stream 

with a small sample of the data),  or via ASAP::O.  We found it  helpful to make this distinction during our 

experiments, rather than to combine both aspects into one system.  The monitoring system will be described in a  

future publication.

Real-time data  processing changes the usage pattern of  high-performance computing resources.   When data 

processing is considered a separate step, a researcher might submit a large array of jobs at the end of one day, and 

expect  to  see  the  results  the  next  morning.   The  researcher  need  not  be  concerned  with  exactly  when  the 

computing cluster runs the analysis jobs, and the cluster’s load management software is free to schedule the jobs 

in the most convenient way.  Serial crystallography data processing jobs can additionally be broken down into 

smaller independent jobs, say of around 1000 frames each, which makes the scheduling even easier – many small  

jobs  can  fill  the  available  time  amongst  other  jobs  which  require  larger  numbers  of  CPUs  available  

simultaneously.  With real-time processing during the experiment, sufficient resources must be available at the  

time of data acquisition.  In principle, this appears to mean that dedicated nodes must be permanently allocated to 

each beamline.  However, other modes of operation might be considered, such as sharing resources between 

beamlines and co-operatively scheduling the start times and lengths of acquisition runs to avoid contention.

7 Conclusion and outlook



We  have  reported  a  system  for  real-time  processing  of  serial  crystallography  data.   The  system  has  been 

extensively  tested  at  PETRA III,  and  has  already  become  an  indispensable  part  of  the  setup  for  serial  

crystallography at P11.

In future work, we plan to interpose a binning worker to reduce the 4148×4362 pixel size of the Eiger detector to  

2074×2181, 1382×1454 or 1037×1090 pixels, by combining pixel readout values in squares with side length 2, 3 

or 4 pixels respectively.  Here, we have tested with the full 16 megapixel detector resolution, but this is excessive  

for all but the largest unit cell sizes.   The binning worker has been implemented, but not yet thoroughly tested,  

and is shown in figure 1.  It operates by reading the image data stream from ASAP::O and writing a new stream  

with the binned data.  The performance profiling results show that most of the processor time is spent on per-

pixel operations, so reducing the number of pixels is likely to produce a proportional increase in the speed.

We intend to test the system at the European XFEL, using either the AGIPD or LPD detectors.  Compared to the  

reference experiment described in this paper, these detectors have 1/16 the number of pixels (1M compared to  

16M), a higher frame rate (3520 compared to 133 frames per second), more complicated geometry (16 and 64,  

respectively, compared to 1 panel) and additional complications due to adaptive gain switching.  We expect that  

real-time processing will  be computationally feasible under these conditions, but the extension to segmented 

detectors will increase the need for rapid refinement of detector geometry.  We therefore plan to additionally  

implement a system for continuous geometry refinement, which can be combined with the real-time processing  

system such that a refined geometry description is always available, with little to no user effort required.

We are also currently implementing and testing the option to store only the hits or the indexed frames.  One  

option for this, shown in figure 1, is to create a separate ASAP::O stream from within CrystFEL and configure the 

NeXus writer tool to take its input from that, instead of from the stream written by the Eiger connector.  This will  

be an important step towards realising the full potential of real-time data processing.

Finally, we invite and look forward to discussion within the wider crystallography community about the most 

appropriate  way  to  reduce  the  large  data  storage  costs,  while  simultaneously  satisfying  our  standards  for 

reproducibility.

8 Software and data  availability

CrystFEL is free and open source software, available from https://www.desy.de/~twhite/crystfel/.  The ASAP::O 

interface for CrystFEL has been included since version 0.10.2, and the asdf indexing algorithm was first included 

in version 0.6.1.  These, as well as other relevant features, are being continuously developed, and the very latest 

versions  are  available  from  the  version  control  repository  accessible  via  the  website.   We  have  collected  

recommendations for  streaming and high-speed data  processing within the CrystFEL source code repository 

itself,  as  https://gitlab.desy.de/thomas.white/crystfel/-/blob/master/doc/articles/online.rst  and 

https://gitlab.desy.de/thomas.white/crystfel/-/blob/master/doc/articles/speed.rst  respectively.   The  programs  for 

analysing  and  plotting  the  CrystFEL  performance  profiling  data,  written  in  Julia,  are  available  from 

https://gitlab.desy.de/thomas.white/profileanalysis.jl.



The  ASAP::O  framework  is  currently  only  deployed  at  DESY,  but  information  is  available  from 

https://asapo.pages.desy.de/asapo/  and  source  code  from  https://gitlab.desy.de/asapo/asapo.   The  “Seedee” 

serialization  library  can  be  downloaded  at  https://gitlab.desy.de/fs-sc/seedee,  and  is  also  available  via  PyPI  

(https://pypi.org/project/seedee/).  The Eiger-ASAP::O Connector and ASAP::O NeXus writer tools will be made 

publicly available soon.  The complete system is available for use at P11, supported by the Scientific Computing  

group at DESY Photon Science.

The lysozyme structure has been deposited in the protein data bank with accession code 8RPM.
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Figure 1: Overall flow of data through the software components of the system.



Figure 2 Performance profiling results during a run with high hit rate.  (a) The first 20,000 

profiling records, averaged in blocks of 133 records.  A longer wait period is visible for the very 

first frames, after which the average processing time (including wait time) closely matches the 

available time per frame (722 ms).  (b) Expanded view of records 5,000-15,000, during which the 

hit rate dropped to zero for a short period. The wait time has been removed to more clearly show 

the true processing time per frame.  Records were averaged in batches of 50.  (c) Colour key.
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Figure 3:  Overall structure (cartoon plot, orange) of lysozyme obtained after automated 

refinement and model building against data produced by the real-time processing system. Residues 

ranging from Leu56 to Ser60 area displayed as sticks and overlaid with 2Fo-Fc map (blue, sigma of 

1.0 and cut-off radius of 1.6 Å) and Fo-Fc maps (green, sigma of +3.0; and red, sigma of -3.0 and a 

cut-off radius around the residues of 2 Å). Figure created with BioRender.com.



Table 1 Data and structure solution statistics for the lysozyme structure.

PDB 8RPM

Collection Temperature (K) 295

Number of collected frames 200000

‍Number of hits 60317 (30.2% of frames)

Indexable frames 14322 (23.7% of hits)

‍Indexed lattices 14322

Space group P 43212

Unit cell (a = b, c, α=β=γ) 79.200 Å , 79.200 Å , 38.000 Å, 90°

Resolution (Å) 1.80 – 56.00 (1.80 – 1.864) 

Unique reflections 11716 (1118)

⟨I/σ(I)⟩ 5.292 (0.94)

Completeness (%) 100 (100)

Multiplicity 373.9 (248.5)

Rsplit 0.117 (1.115)

CC1/2 0.98 (0.446)

Wilson B factor (Å²) 37.95

Resolution range used in refinement  (Å) 1.80 – 56.00 (1.80 – 1.847)

Reflections used in refinement 10264 (586)

Reflections used for R-free 637 (38)

R-work/Rfree 0.185/0.222 (0.381/0.441)

RMS(bonds) 0.005

RMS(angles) 1.433

Ramachandran favored (%) 98.4

Ramachandran allowed (%) 1.6

Ramachandran outliers (%) 0

Average B-factor (Å²) 34.619
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